Using Fourier transform infrared (FT-IR) absorbance spectroscopy and multivariate analysis to study the effect of chlorine-induced bacterial injury in water.
نویسندگان
چکیده
The effect of chlorine-induced bacterial injury on spectral features using Fourier transform infrared (FT-IR) absorbance spectroscopy was studied using a mixed bacterial culture of (1:1) ca. 500 CFU/mL each Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 15442 in 0.9% saline. Bacterial cells were treated with 0, 0.3, or 1.0 ppm of initial free chlorine (21 degrees C, 1 h of contact time). Chlorine-injured and dead bacterial cells retained the ATR spectral properties of uninjured or live cells in the region of C-O-C stretching vibrations of polysaccharides, indicative of the cell wall peptidoglycan layer and lipopolysaccharide outer leaflet. This confirms the observations of others that extensive bacterial membrane damage is not a key factor in the inactivation of bacteria by chlorine. The bactericidal effect of chlorine caused changes in the spectral features of bacterial ester functional groups of lipids, structural proteins, and nucleic acids, with apparent denaturation reflected between 1800 and 1300 cm (-1) for injured bacterial cells. Three-dimensional principal component analysis (PCA) showed distinct segregation and clustering of chlorine-treated and untreated cells. Cells exposed to chlorine at 0.3 or 1.0 ppm could be distinguished from the untreated control 73 and 80% of the time, respectively, using soft independent modeling of class analogy (SIMCA) analysis. This study suggests that FT-IR spectroscopy may be applicable for detecting the presence of injured and viable but not culturable (VBNC) waterborne pathogens that are underestimated or not discernible using conventional microbial techniques.
منابع مشابه
Studying of the Bacterial Growth Phases Using Fourier Transform Infrared Spectroscopy and Multivariate Analysis
This study examined the potential of Fourier transform infrared (FT-IR) absorbance spectroscopy to detect biochemical changes in bacterial cells that occur during bacterial growth phases in batch culture. Two bacterial strains, Escherichia coli ATCC 25922 and Listeria innocua ATCC 51742 were cultured in brain heart infusion (BHI) broth and incubated at 37C and cells recovered Corresponding auth...
متن کاملCharacterization and quantitation of aprepitant drug substance polymorphs by attenuated total reflectance fourier transform infrared spectroscopy.
In this study, we report the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) for the identification and quantitation of two polymorphs of Aprepitant, a substance P antagonist for chemotherapy-induced emesis. Mixtures of the polymorph pair were prepared by weight and ATR-FT-IR spectra of the powdered samples were obtained over the wavelength range of 700-1...
متن کاملRapid characterization of microbial biodegradation pathways by FT-IR spectroscopy.
Fourier transform-infrared (FT-IR) spectroscopy has become an important tool for rapid analysis of complex biological samples. The infrared absorbance spectrum could be regarded as a "fingerprint" which is characteristic of biochemical substances. In this study, Pseudomonas putida NCIMB 9869 was grown with either 3,5-xylenol or m-cresol as the sole carbon source, each inducing different metabol...
متن کاملRapid detection and identification of Pseudomonas aeruginosa and Escherichia coli as pure and mixed cultures in bottled drinking water using fourier transform infrared spectroscopy and multivariate analysis.
Fourier transform infrared (FT-IR) spectroscopy and multivariate analysis were used to identify Pseudomonas aeruginosa and Escherichia coli ATCC 25922 inoculated into bottled drinking water. Three inoculation treatments were examined: (i) E. coli ATCC 25922 (N = 3), (ii) P. aeruginosa (N = 3), and (iii) a 1:1 (v:v) mixed culture of both P. aeruginosa and E. coli ATCC 25922 (N = 3). The control ...
متن کاملEXCESS THERMODYNAMIC PROPERTIES CALCULATIONS FOR ALCOHOLS IN INERT SOLVENTS BASED ON FOURIER TRANSFORM INFRARED SPECTROSCOPY MEASUREMENTS
Self-association of alcohols; including ethanol, methanol, cyclopentanol and octanol in separate mixtures with inert solvents have been studied using FT-IR spectroscopy. Except for the band at 3640 cm–1 in the IR spectrum of the alcohols which is due to the monomer species, the presence of other bands in the region of stretching vibrational frequencies of OH (3100-3700 cm–1) are attributed to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of agricultural and food chemistry
دوره 56 19 شماره
صفحات -
تاریخ انتشار 2008